Bayesian Inference for Gaussian Mixed Graph Models
نویسندگان
چکیده
We introduce priors and algorithms to perform Bayesian inference in Gaussian models defined by acyclic directed mixed graphs. Such a class of graphs, composed of directed and bi-directed edges, is a representation of conditional independencies that is closed under marginalization and arises naturally from causal models which allow for unmeasured confounding. Monte Carlo methods and a variational approximation for such models are presented. Our algorithms for Bayesian inference allow the evaluation of posterior distributions for several quantities of interest, including causal effects that are not identifiable from data alone but could otherwise be inferred where informative prior knowledge about confounding is available.
منابع مشابه
Bayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملThe Hidden Life of Latent Variables: Bayesian Learning with Mixed Graph Models
Directed acyclic graphs (DAGs) have been widely used as a representation of conditional independence in machine learning and statistics. Moreover, hidden or latent variables are often an important component of graphical models. However, DAG models suffer from an important limitation: the family of DAGs is not closed under marginalization of hidden variables. This means that in general we cannot...
متن کاملBayesian Inference for Discrete Mixed Graph Models: Normit Networks, Observable Independencies and Infinite Mixtures
Directed mixed graphs are graphical representations that include directed and bidirected edges. Such a class is motivated by dependencies that arise when hidden common causes are marginalized out of a distribution. In previous work, we introduced an efficient Monte Carlo algorithm for sampling from Gaussian mixed graph models. An analogous model for discrete distributions is likely to be doubly...
متن کاملGraphical Answers to Questions about Likelihood Inference for Gaussian Covariance Models
In graphical modelling, a bi-directed graph encodes marginal independences among random variables that are identified with the vertices of the graph (alternatively graphs with dashed edges have been used for this purpose). Bi-directed graphs are special instances of ancestral graphs, which are mixed graphs with undirected, directed, and bi-directed edges. In this paper, we show how simplicial s...
متن کاملBayesian modeling of Dupuytren disease using copula Gaussian graphical models
Dupuytren disease is a fibroproliferative disorder with unknown etiology that often progresses and eventually can cause permanent contractures of the affected fingers. Most of the researches on severity of the disease and the phenotype of this disease are observational studies without concrete statistical analyses. There is a lack of multivariate analysis for the disease taking into account pot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1206.6874 شماره
صفحات -
تاریخ انتشار 2006